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Rayleigh's Method Applied to a Conducting Liquid Drop in the Presence of
a Point Charge

by Clyde Morrison

Richard Leavitt

ABSTRACT

The method that Rayleigh formulated in 1879 is used to determine the
effect of a point charge on the' natural frequencies of a charged drop.
Explicit expressions are derived for the resonant frequencies and the
deformation of the charged drop. The results are expressed in terms of sums
over particular types of Clebsch-Gordon coefficients and more complicated
sums. Further work is necessary before practical application of the results
can be made 'p
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INTRODUCTION

The purpose of this work is to extend our previous method of solution to

problems involving drops in an electric field" I) to charged droplets.

Conseqently, we summarize some of our more recent results on the study of the

dynamics of liquid droplets.

The methods employed here are consistent with the method employed by Lord

Rayleigh(2 ) in his original treatment of the dynamics of liquid droplets. We

begin with a brief rederivation of Rayleigh's results for uncharged and

charged conducting droplets. (3 )  This is followed by a more detailed

derivation of the problem of a charged droplet in the presence of a point

charge. Extensive attention is given to this latter result, since it appears

to be new. Many of the results given here may have application to the

formation of clouds, (4-8 ) the physical aspects of drop formation,(9 ) the

stability of electrified surfaces, (I0 ) and the electrical dispersion of liquid

aerosols.
(11 )

RAYLEIGH' S RESULT

4 In his original paper, Rayleigh12 1 assumed that the distance, r, from the

center to a point on the surface of the droplet can be expanded in a Legendre

series as

4 r(l,t) = a0 t) + 1 -*a(t) Pk (cos e) (1). k

where we have assumed that the drop is symmetric around the z axis of the

* drop. At this point the z axis can be chosen in any direction, but later,

4 when we include the electromagnetic energy, the electric field will be assumed
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along this axis. The prime on the sum will be used throughout to denote the

absence of the k = 0 term. The volume of the drop is given by

2v= f d f dO f r' sin 6 dr' . (2)
0 0 0

Since the drop is symmetric around z and with U = cose, we have

V - f r3dU . (3)-13' 3
From (1) we have

3' 3 2 .
r a0 + 3ao Pk + 3ao a a Pk P (4)

~kk t

and we use this result in (3) to obtain

V - [2a 0 3 • 2 aO  k (5)

where we have used*

S-1(6)

• and we have terminated the approximation at the square of ak. We will follow

this procedure throughout; that is, we assume !akI << a0 and products of more

than two ak are ignorable (k # 0). We assume the fluid is incompressible with

equilibrium radius "a" so that the volume (5) is a constant, 4wa 3/3; that is,

2
3 3 a ak (7)
a a0 +3a 0  2k+(7)

k

See the appendix for a number of useful relations involving Legendre
polynomials.

4
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or

2
la

a &() [i + 2k11(8)

then a 0
2

a k
a - I/a ' 2k+1 (9)

k

The result given by (9) serves as a constraint on the variables ak.

The potential energy, Us , of the drop due to the surface tension, y, is

the surface area of the drop multiplied by the surface tension, or

2w

U =y f" do f r sind , (10)
. 0

where ds is the arc length along the surface given by

ds 2  dr 2 + r22

Then
ds = d [ 2 + ( 21/2(11)

Using the result (11) in (10), we have

2 2) dr 2]1/2

U 21y r [r + (1 - )) )J
t:?l]-1

where we have used the relation
.. d dd- sin 0 d

da dp

Expanding the integrand in (12) we have

1 2 (1 (2 dr 2
U 2wy f [r +- 2 du (13)

-15
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dr

and since F does not involve a0 , we need consider no higher terms. The

integrals in (13) can be evaluated simply to give (see the Appendix)

Us = 27y [2a0 + 2' [klk+)+2 a (14)

and if we use the constraint given in (9), we have

Us - 2ly [2a 2 + M' (k-1) (k+2) a(
s ] ,(15)
k

which gives the potential energy due to surface tension correct through terms
of order 2

ak.

To calculate the kinetic energy, T, we need to evaluate the integral

2T f 1 /2 p v dT, (16)

where p is the density and v is the velocity. Since we are assuming that the

*, fluid is incompressible and that there are no sources or sinks within the

*. drop, we have

V v -0 ; (17)

and further, if we assume

V v-0 (18)
'4.

then v can be derived from a potential function, v such that
+v

v V , (19)

and from (17) we have

v7 2 0 (20)

* Using (19) in (16) we have

"T i1/2 p f (V~v) dT (21)

6
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and by converting the integral over the volume to a surface integral, we have

T =,1/2p J *(V JIv) * d • (22)

ssuming that the area element da is approximately along r (corrections are of

higher order), we can write d0 - r a d du, where * = the azimuthal angle

and r = the unit vector along the radius; then

.21
T = pa f v d d . (24)

The solution of (19) appropriate for our problem is

*8 rn P(j) (25)
n

where we have assumed that the potential is evaluated at the surface. Using

(25) in (24) we have

2 n 2n-1 2T 21pa 2n+I a n (26)

The.d in (26) can be evaluated by equating the velocity at the surface, given

by ' , to r from (1), or

=n a n -  (27)
nnThen (26) becomes

.@2

T 21pa n(2n+1) (28)

The results given in (28) and in (15) are sufficient to form the Lagrangian
(L- T- U) in the absence of other energy sources. Rayleigh 12 ) uses these

7
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results to obtain the equation of motion for the an (t).by treating the an as

generalized coordinates. We will put off doing this until the electromagnetic

energy is contained in the Lagrangian.

The particular problem we wish to solve here is for a charged conducting

sphere of equilibrium radius a with total charge Q. This problem was also

solved by Rayleigh, (12 ) but by a slightly different technique than was used in

his original paper. Since we are interested here in extending his original

technique to a new problem, we shall include more detail than in our previous

discussion.

From Maxwell's equations we have

V x V 0 , (29)

or

Then from
, !V E 0 ,(30)

we have
V2 0. (31)

" Thus, the potential * is a solution of Laplace's equation. The appropriate

. solution of (31) for our problem for r > r(8,t) is

Sn (32)

n r

The total charge on the sphere, Q, is assumed constant; thus, A0 = Q. This

* result (A0 - Q) is simply proven by assuming a very large sphere surrounding

the charged drop and employing Gauss' theorem at the surface of that sphere.

The other An must be found from the boundary conditions of the problem. Once

the An have been determined, the electromagnetic energy is given by(1
3 }

8
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E 1/2 f p do , (33)

where p is the surface charge density, * is the potential at the surface, and

the integral covers the surface of the sphere. Since the potential on a

.* conducting surface is constant, V, say, then (33) becomes

u =/Qv (34)

where Q =f pda and is a constant by assumption. The potential at the

surface, V, is however a function of the variation of the shape of the

surface; as will become apparent.

To proceed further it is convenient to introduce the notation

r(Ot) =a 0 + a ak Pk

and ( 35 )A n A n

which serves to keep track of the order of the corrections. In the final

result we let 6 = 1, since

6 only serves as an artifice to keep the terms in order. The single boundary

4 condition needed is

AVf + [' n (36)
r n+1 n

n r

where r is the function of 8 given in (35). The coefficients A( ) in (35) can
n

be determined by using (35) in (36) and equating powers of 6 on each side. If

this is done, the results through 62 are

A 0)(0)
a 0

9
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(0)
A 0on

S n-IA n Qa 0  a

-M0
(1) a2

and A n
adV()(l nf n 9

. n+2 (2n+1) 3 2n+1Ia 0  a0  n0a 0 n

or 2

V(2)' n
3 (2n+l) (37

a0

To obtain this result, the equations given in. the appendix were used. The

electromagnetic energy through second order is given by using (37 in (34) or

SUE (0Q [vC ) + V ( ] . (38)

The result for V"0  can be reduced further by using the constraint, (9), in

(37) to give

a 2
(0) a

[i 1 (39)
a2 2n+1a n

The result (39) along with (15) and (28) is sufficient to form the Lagrangian

for the system, that is

L =T US UE

resulting in a2

L- 2wpa3  [ n 2y i (n-1)(n+2) 2
n(2n+1) n (2n+) ani.•n n

(40)

+' (n-1) 242a3 n +1 an

10
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II

where the constant terms in (15) and in (39) have been ignored.

d 9L 3L
The equation of motion for an is Lagrange's equation, - . 0 ,

which becomes n

2
a + w a n 0 (41)n ne

where
2 n(n-1) 2ry(n+2) ---

pa3  4ra3

which is the result derived by Rayleigh (12 ) expressed in the same form. As

was pointed out by Rayleigh, the system becomes unstable for w2  0 , which
n

occurs for values of Q such that

2
-2 - > y(n + 2) (42). . 4ira3 '

2
which for the lowest mode (n 2) requires that > 4y. The charge on the

drop acts so as to reduce the surface tension so %hat only the higher modes

are stable. The result given in (42) has been used by numerous workers as a

starting point for the discussion of not only charged drops but also uncharged

drops in an external uniform electric field, one of the more recent being the

article by Smith.
(13 )

If in (42) we replace the charge by the electric field at the surface of

the equilibrium sphere (Q = a2E), then we can write

E a > n + 2  (43)
Y

and for the fundamental mode (n = 2) we have

E a 2 ,
• Y

11
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for the onset of instability. Frequently, in reporting experimental results

of drops in electric fields, the field E in (43) is taken as the external

field and the constant Co , determined in the equation

E - Co (44)

by experimental means. Such a procedure was adapted by Wilson and Taylor '

in their experiments with soap bubbles, where they evaluated CO = 1.61 *

as the critical value in (44).

CDNDUCTING DROP IN THE FIELD OF A POINT CHARGE

We assume as before that the conducting drop of charge, Q, equilibrium

radius a is at the origin of the coordinate system. The point charge, Q1, is

located on the positive z axis at a distance R from the origin. The energy ofp the system corresponding to (33) is

UE 2 1

where, as before, V is-the potential at the surface of the sphere and *(R) is

the electric potential at the point charge. The expressions for the kinetic

energy, (28), and the surface energy, (15), remain the same as before.

The potential i appropriate for the problem is

A n

n+1 n I n+1n(
r R

12
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where in the second term we have assumed r < R, which is the region of the

interest. It is convenient to rewrite (46) as

Q A n
+ P n + I P (47)• n + 1  n 1 n+1'

n r Rfl

so that all the sums have the terms n 0 omitted. To evaluate the constants

in (47), it is convenient to assume the same "bookkeeping procedure" as given

in (35) to expand each side of the equation

*()I~re~ )  +-- yAnn + Q .rn
S + n n + r- P , (48)

V ( rrc,t) r R+n+1 n +P 1 n+1 nrR

and equate the coefficients of each order. The terms in the potential are

then given by

v (0) Q1 + 49
= I (49)
R a0

n-1
n a a (n+lla A

S(1) n - nn (50)
V Q1  (2n+I)Rn+1 (2n+I)a 0n+

2

2 A(1)

'2 an  (n+1)a A n (n+1)(n+2)A 0  2
= ,-n+2 n - n+3 a Iak <kk'In>
a0  (2n+1)a 0  2(2n+1)a 0  k,k'

n-2

+ Q n(n-1 0+ I a a <kk'in>2  (51)
n 2(2n+1) Rn+1 kk k k'

where the Clebsch-Gordan coefficients (C-G coefficients) <kk'-n>2 are given in

the appendix. The corresponding expression for the An are given by

A (0) Ql 2n+1 (52)
n R+1

. (0 ) a 2
(1) n-(+1)A <knkn>2

A a Q a + a <k 1n> a0 Q k R +  n>
nnk a 0

- 13
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(53)

1+1 )Aa1)
A( 2 )  -a0 2 Q akak ,< kk n, 2 + a n <ktln, 2

n0 kko 0 Xk a0X+1

(0) £n-1 IU+1 ) (1£+2) A£ M1- )aoQ-ao  7. [ +1 + ]+ a 7.k <k' 11v> <V1ln>
£kk' 2a 0  2R£+  aa'V.

By combining (49) through (54), we obtain

.T.5 
( 0) Q1= - + 9-a O, (55)

R a0

S= i (0)n.R'- a n  (56)
a0  na• V(2~1 +'Q 0 n+1

--- V r"1 <k jn 2  , (57)
a0  n a 0 n a +

V (2) = _ . 1 n(+ 1I1aka(0  <kln>2  (7

(1) n-i n-1 (21+1)a 0A = a0  Qa - a 0  Q1 I k  <ktn> 2  
, (58)A(1 -2. a0£+

= a 2 Q L tata <k1n>2 - a - 2  Z (2t+l)( . a ,Tk,k£

and

v T " V <k'ti>2 <vkln> 2 (59)

These results are all that are necessary to obtain the electrostatic energy

through terms of order a. In (56) through (58), a0 can be replaced by "a",
4 but in (55) the constraining equation, (9), must be used to cast this term in
" final form. If this is done we have V V( 0 ) + V( I ) + V( 2 ) and if W= 1/2

QV, the first part of the energy given in (45) is

:

14O
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.2 1 + 2 an xn + 1 a " (n-1 a 2  
a  Ea k X

a n a n a ki

where

';k¢ -W x < kLIn>2

and n=1

x , a/R

This result, (60), is in final useable form for Lagrange's equations, but the

second part of the electrostatic energy given by (45) needs more reduction

- before it can be used. From the second term in (45) we have

W2  Q *(R) , (61)

where the terms in *(r) that become infinite at r = R aro removed. From (46)

and (48) we have 'A
W2 i Q1  [R ' n , (62)

where in the second term we have used the

relation P (cose) = I for e = 0, since we are assuming that the charge Q, lies
n

on the positive z axis at a distance R from the origin. As in our previous

procedure, we assume

W -(0) W1 (2)
W 2 w2 2 + w2  (63)

so that from (62) we have

;i "~~2 "2 1, [ . ,-2 ,1

15
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lo 
' j (1) 1 A(1)(65)

i' 2 =T Q1 n (65
nR

and (2)

(2) nW2 nR (66)

Each of the terms, (64), (65), and (66), require considerable effort to reduce

them to useable results.

The first, (64), is the simplest; when (52) is used, we have

2 2Q- 2 4 4, 2

.(0) 1 QQ1 Q1 x x4(3-x 2 ) 1 n
2 2 R 2a -2 2 2 ' (67)1- 1x) a n

where x = a/R, and we have used the constraint (9). If in (65) we use (58),

we have

2
W' n+a (2k+11 x anGkn(x) (68)

2a n 2a n,k .G

where Gn(X) is as defined in (60). The last term, (66), can be obtained by

" substituting (59) into (66), which gives
2

_(2) Q1 1 '
: 2) ---" j a£ak G~k(X) - 2 m(2m+1)aka, Gm (x) Gmk(x) . (69)

2 2a 3  k 2a ktm k m

With the result given in (69), we have completed all the terms in the

potential energy that are necessary to form the Lagrangian of the problem.

Unlike most of the previous results, there appears to be no advantage in

* combining (67), (68) and (69), since corresponding terms do not exist. The

Langrangian can be written

L T -U , (70)

16
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with

SU U S + UE , (71)

where T is given in (28), US is given in (15) and

tIE-W ~ (0) ( ) (72)U. UE W w1 + w 2  +W2  + W2  (72

The equation of motion for the generalized coordinate ap is given by

d aL 9Ldt -0 (73)
dt a; aap

p
* which can be written as

d 3T SL UE__ + . . .(74)
da p p

p

With the appropriate substitutions we have

'pa 3  ap (p-1)(p+2) ap(2p+1) + 4wy 2p+1 p

2
3 2p+ £ -3-i (2p)G,,(x) a
a2  2 a

2- xi x4 (3-x ) aQ 13 21

a 3 (1-x 
2 2 2p+1

3 + 4aP 2 1) PM(x)
a m

0 1

where

17
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QQIP+ ) ' k l  Ix

F0 - ---4 + 2 ' (2k + 1) Gkpx

a 2a k

and

F1 - 1 (+ p) a G (x)

3"' m(2m + 1) a. G ,.(x) G Mx)
a LM

The terms on the right side of (75) have been grouped in a particular
manner. The first four terms multiply ap and act as a restoring (or

repulsive, depending on the sign of Q1 ) force. The term F0 acts as a constant

force causing a displacement from the equilibrium point (normally, the

equilibrium point is at ap = 0), and the term F1 acts to couple ap to the

other modes of vibration.

If we ignore F0 and F1 on the right side of (75), we can write

2
a +,w a =0 ,(76)
p p p

where

*4 23 2 x(3-x2 ,

a w 2 yp(p 1p + 2) - u p(p - 1) + u (-x2 2 P

14 p(1-x)

+ U 1(2p)(2p + 1) G (x) - U2 p(2p + 1) 1 m(2m + 1)G2 M(x)
12(22(p )pp 2 pm7

(77)

22Q QQ
- where 0 - U2  --- a . The first two terms on the

1 ~ jand U1 2  3
41rt fa 3 4a

right side (77) are just Pa times the frequency of a charged drop as

derived originally by Rayleigh, (12 ) and are given in (41). Since FO, F1, U2,

and U12 vanish when QI- 0 the result (77) becomes identical to (41), as it

should. If, on the other hand Q - 0, we have, from (77),

i8
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pa 3 2(Q=O) yp(p - 1)(p + 2) + U2 p U2 p(2p+l) m(2m+l) G 2 (x)
p U2 22 p 2 1 m pm

(-X2) m (78)

which can cause either an increase or decrease in the resonant frequency of a
3 2

free drop [pa w = yp(p - 1)(p + 2)] through the rather complicated
p

dependence of the last two terms on x. The frequency shift given in (78) does

not depend on the sign of the point charge Q, as it should not; however, when

the charge Q is not zero, then (77) shows that the sign of the charge QI

relative to Q is significant, as apparent by the terms involving U12.

Many of the less obvious results of (77) will have to await considerable

computational investigation before quantitative statements can be made.

However, it is possible that further analytical work can be done on the G (x)
pp

and the sums involving these functions. They seem to be expressible in terms
of terminating hypergeometric functions. This can be seen by expressing the

CG-coefficients in G (x) in Racah's(15 1 6 ) closed form and using expressions
pp

for the hypergeometric series and their identities given in Rainville. ( 17 )

'4

1
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APPMIDIX

During the course of the development of the theory a number involving

relations of Legendre polynomials are needed. We abbreviate P (p) = P and
d" P (P) = Pi in the results.

-12f PtP d -iI16 1k(l

-2 21 tk *(Al1 - d = 2t(L+l ) 6 (A2)

-1~ ~ ~t~'k2X+1 tic1 - ) 2p d'. =d2.+ k in
1 1 2- (1t+1 )+k(k+l)-n(n+1)] 2
f (I n ic t 2n+1 (A3)
-1

[<Zkln> = <X(0)k(0)In(0)> = C (Xkn;00)]

where <tkln> is a Clebsch-Gordan coefficient. Of these three results, the

last (A3) is the only difficult one to derive. A thorough discussion of

Clebsch-Gordon coefficients is given by Rose(16) or Brink and Satchler,(1 8)

but is more general than is necessary here. In general, the simple relations

given here can be derived from

P = <tXk> 2 l n " (A4)

Thus,
<Xkln>2 - (2n+1) f PnPkP di (A5)

-1I

which is a special case of Gaunt's (19 ) formula.

Other properties which we need are

<kIn>- <tl> , (A6)

21
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<jLkln>2  (2n*-) <1nk>2  (A7)
2k1

<£k 0> 2 1 " k' (A8)

2 2t+1

2= +l '<1I> 21+1 'n - + 1

£
21+1

(A9)

- 0 For other values of n

The result given'in (A4) can be used to reduce more cdmplicated products such

as

PkPP = n <ki1n'>2 Pn
n'

- <kin'>2 <n'nln">2Pn, , (A10)n*,nu T

which gives the result (A5) if both sides are integrated over 1j, and (Al) with

(A8) is used.
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